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Coupled-mode analysis for single-helix chiral fiber gratings
with small core-offset
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Using conventional coupled-mode theory, a set of coupled-mode equations are formulated for single-helix
chiral fiber long-period gratings. A helical-core fiber is analyzed as an example. The analysis is simple in
mathematical form and intuitive in physical concept. Based on the analysis, the polarization independence
of mode coupling in special fiber gratings is revealed. The transmission characteristics of helical-core fibers
are also simulated and discussed.
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Fiber optic sensors based on conventional fiber grat-
ings have been intensively developed for various physical
measurements. Recently, a novel kind of fiber gratings,
called chiral fiber grating, has been proposed and demon-
strated, showing advantages over conventional ones in
many applications[1−6]. A chiral fiber is actually a spun
specific fiber (e.g., a spun high birefringence fiber or a
spun eccentric core fiber), in which the twist pitches are
less than 1 mm. Due to their distinctive spectral prop-
erties compared with those of previous spun fibers with
pitches of millimeters, as well as their similarities to those
of conventional fiber gratings, they are given a new name,
called chiral fiber or Chiral fiber grating[1,7]. There are
two kinds of structures, namely, double- and single-helix
structures. The first is formed by twisting a birefringent
fiber with a 180◦ rotation symmetry, whereas the latter
is formed by twisting a fiber with a nonconcentric core.
The twist for the two structures may be either left- or
right-handed. Mode coupling in a double-helix structure
is polarization-selective and has relations to the twist
handedness. For example, a right-handed twisting chiral
fiber long-period grating (CLPG) may support the cou-
pling of the right circularly polarized core mode to a left
circularly polarized cladding mode at a certain resonant
wavelength[8,9]. However, a single-helix structure does
not support the polarization-dependent coupling. This
is because the coupling mechanism and spectral proper-
ties are different and must be thoroughly understood for
further study and wide application.

Oh et al. have experimentally obtained single-helix
CLPGs and analyzed them using the conventional
coupled-mode method[6]. However, the reason why their
single-helix structures are polarization-insensitive has
not been explained since the expression they used to
describe the permittivity of the single-helix structure is
that for the double-helix one. In this letter, starting
from the coupled-mode theory that has been popularly
used in the analysis of conventional fiber gratings[7,10],
we use the ideal mode approach[11] to study single-
helix CLPGs. The ideal mode approach is one of the
methods in coupled-mode analysis, namely, to expand
fields in the fiber cross-section in terms of ideal modes

that are eigenmodes in a specific reference fiber selected
appropriately[10]. A helical-core fiber is taken as a typical
example of single-helix structures in the analysis where
the polarization-independence of the mode coupling is
revealed. Attributed to the superiority of the conven-
tional coupled-mode theory, the whole analysis is simple
in mathematical form and intuitive physical concept.
Moreover, the proposed analysis can be easily extended
to study chiral fiber gratings with shorter periods or with
double-helix structures. The transmission characteristics
of helical-core fibers with different core-offsets are also
simulated. The results coincide with those published in
previous work, thereby validating the effectiveness and
accuracy of the present theoretical model. The special
spectral characteristics of the structures are also dis-
cussed.

We consider the single-helix CLPG which is formed by
twisting a fiber with an eccentric core. This is almost a
standard single-mode fiber except that its core follows
a helical path in the cladding[5]. Thus, this helical core
can be considered as a deformation of a straight round
core, as shown in the schematic diagram of the fiber
cross-section in Fig. 1. We suppose that the cladding
radius is finite and the refractive index of the outside
material is less than that of the cladding to support dis-
crete cladding modes. We use linearly polarized (LP)
modes for simplicity since it is a weak-guide fiber.

If the offset of the eccentric core is very small compared
with the core diameter, the perturbation of the dielectric

Fig. 1. Schematic diagram of the cross-section in a helical-
core fiber.
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constant in the core region can be expressed as[4]

∆ε(r, ϕ) =
(
n2

co − n2
cl

)
δ (r − r0) d cos (ϕ − τz) , (1)

where the twist rate τ = 2π/p (p is the twist pitch), nco

and ncl are refractive indices of the core and cladding,
respectively, z is the longitudinal coordinate variable of
helical-core fiber, d is the offset, and r0 is the equivalent
radius, which is the zero order coefficient of the trigono-
metrical series of the eccentric core with a diameter of a.

With ∆ε(r, ϕ) expressed in Eq. (1), the core mode cou-
ples with the LP1m cladding modes, which is manifested
in the expression of the coupling coefficients. According
to the distribution of its electromagnetic fields, a nor-
mal fiber LP1m mode has four forms: x- and y-polarized
fields with azimuthal variation of cosϕ (two even modes)
and sinϕ (two odd modes), respectively. Since the eccen-
tricity of the fiber is very small, the ideal mode approach
proposed by Marcuse[11] is applicable. Thus, all these
modes including the core mode, are defined in a refer-
ence fiber with a concentric round core in the fixed coor-
dinate system (x̂,ŷ,z). The pair of core modes (LPx

01 and
LPy

01 modes) couple with both the two pairs of even and
odd modes in this helical core fiber. In brief, the coupled-
mode equations for the coupling with the two even modes
will be given first. Those for the coupling with the odd
modes will follow, after which all of these equations will
be combined together. Such separate treatment is valid
because there are no couplings between the even and odd
modes. According to the theory of Marcuse[11], the cou-
pling between the core modes and even LP1m modes can
be described by the following coupled-mode equations:

d
dz


Ax
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A
y
01

A
x,e
1m

A
y,e
1m

 =


−jβco 0 −jC1 0

0 −jβco 0 −jC2

−jC1 0 −jβcl 0

0 −jC2 0 −jβcl
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A
y
01

A
x,e
1m

A
y,e
1m

 , (2)

where Ax
01 and A

y
01 denote the amplitudes of x- and y-

polarized core modes, respectively; A
x,e
1m and A

y,e
1m denote

those of x- and y-polarized even cladding modes, respec-
tively; and βco and βcl are the phase constants of LP01

and LP1m modes in the reference fiber, respectively. The
coupling coefficients C1 and C2 can be expressed as[12]

C1 = C2 = ωε0

∫∫
∆ε(r, ϕ) e01 · e1mds, (3)

where e01 and e1m are the modal fields of the LP01 and
LP1m modes, respectively. ∆ε(r, ϕ) is defined in Eq. (1).
Substituting Eq. (1) to Eq. (3), we have

C1 = C2 = C cos(τz), (4)

where

C =
πωε0(n2

co − n2
cl)r0 d e01(r0) · e1m (r0)

4
. (5)

Then, the coupled-mode equations for the pair of core
modes and the pair of the even cladding modes is rewrit-
ten as

d
dz


Ax

01

A
y
01

A
x,e
1m

A
y,e
1m

 = − j


βco 0 C cos τz 0

0 βco 0 C cos τz

C cos τz 0 βcl 0

0 C cos τz 0 βcl
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A
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A
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 . (6)

The coupled-mode equations for the pair of core modes
and the pair of odd cladding modes can be derived in the
same way. They have the same form as Eq. (6), except
that:

C1 = C2 = −C sin(τz). (7)
From these two sets of coupled-mode equations, i.e.,

Eq. (6) and the similar equations except that the matrix
element of C cos (τz) is replaced by C sin (τz), x- and y-
polarized modes are not coupled with each other. Thus,
for both even and odd modes, we have two independent
equation groups for the x- and y-polarized modes, re-
spectively. The two equation groups for different polar-
izations also have the same forms. This means that light
passing through the helical-core fiber is polarization-
independent. Then, for an arbitrary polarization, we
have

d
dz

[
A01

Ae
1m

]
= −j

[
βco C cos τz

C cos τz βcl

] [
A01

Ae
1m

]
(8)

for the even cladding mode, and

d
dz

[
A01

Ao
1m

]
= −j

[
βco −C sin τz

−C sin τz βcl

] [
A01

Ao
1m

]
(9)

for the odd cladding mode.
Combining Eqs. (8) and (9) for an arbitrary polariza-

tion, the coupled-mode equation group is thus obtained.
This group describes the coupling between the core mode
and LP1m modes with the same polarization state in a
single-helix structure as

d
dz

[
A01

Ae
1m

Ao
1m

]
= − j

[
βco C cos τz −C sin τz

C cos τz βcl 0
−C sin τz 0 βcl

]
[

A01

Ae
1m

Ao
1m

]
. (10)

Using a transformation of A+
1m = (Ae

1m + jAo
1m)/

√
2

and A−
1m = (Ae

1m − jAo
1m)/

√
2, Eq. (10) becomes

d
dz

 A01

A+
m

A
−
1m

 = − j

 βco C
/√

2ejτzC
/√

2e−jτz

C
/√

2e−jτz βcl 0
C

/√
2ejτz 0 βcl


 A01

A
+
1m

A
−
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 . (11)
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Equation (11) is a typical coupled-mode equation for
periodical coupling[13]. Under the phase matching condi-
tion, βco −βcl+τ=0 or βco −βcl − τ=0, it can be further
reduced to a 2×2 matrix equation expressed as

d
dz

[
A01

A
±
1m

]
= − j

[
βco C

/√
2e±jτz

C
/√

2e∓jτz βcl

]
[

A01

A
±
1m

]
, (12)

where τ is assumed to be positive or negative for right- or
left-handed helical structures, respectively. Then, since
that βco is always larger than βcl, the + and – of A

±
1m in

Eq. (12) correspond to the left- and right-handed struc-
tures, respectively. This implies that different forms of
LP1m modes (A+

1m or A−
1m) are coupled out for different

handed structures. When the initial condition is A01= 1,
A

±
1m = 0 at the input end (z=0), Eq. (12) can be easily

solved when the phase matching condition is satisfied

|A01|2 = cos2(Cz
/√

2)
|Ae

1m|2 = |Ao
1m|2 = sin2(Cz

/√
2)

/
2

. (13)

Hence, this kind of chiral fiber is polarization-
independent and has the same features as those of con-
ventional fiber gratings[2,5,6]. It needs to be noted, a
helical-core fiber with large eccentricity must be ana-
lyzed by using the local mode approach, from which the
similar results can be obtained.

The propagation of an initial core mode of an arbitrary
polarization through a helical-core fiber with a right- or
left-handed structure is simulated. The following param-
eters of the CLPG are chosen to be the same as those
in Ref. [4]: a round cladding with a diameter of 125 µm
and a cladding refractive index of 1.4432, and a round
core with a diameter 2r0 = 8.3 µm and a core refractive
index of 1.4490, displaced by d = 1 µm. The working
wavelength is set at 1.55 µm. A pitch of 564 µm is cho-
sen to satisfy the phase matching condition. Only two
modes are included: the core and the LP11 mode with
the same polarization. The total power transfer period-
ically occurs between the core and the cladding mode
with a period of 12.2 mm (Fig. 2). The results agree
well with that presented in Ref. [4].

Corresponding to the coupling of the core mode with
the cladding mode, there is a dip at a certain resonant

Fig. 2. Interaction of the core mode with an arbitrary polar-
ization and the LP11 cladding mode with the same polariza-
tion in a single-helix CLPG.

Fig. 3. Dependence of resonant wavelengths of cladding-mode
coupling on the period of the helical structure.

wavelength in the transmission spectrum of the helical-
core fiber. A number of dips appear in the spectrum due
to the coupling to all LP1m (m = 1, 2, 3, · · · ) modes
at different resonant wavelengths. The dependence of
the resonant wavelengths on the structure period is cal-
culated according to the phase matching condition for
individual resonances (Fig. 3). These are similar to
those observed in conventional long-period fiber grat-
ings. These dependences are valid for any polarization
of the core mode and are not changed for different hand-
edness of the helix structures. Compared with the ex-
perimental results reported in Ref. [5], the variation
tendencies of the two sets of results in this letter are
in good agreement. However, since the design parame-
ters of the grating used in the experiments are unknown
for our simulation, there are differences between the
simulation and the experimental results. Moreover, the
resonant wavelength determined by the phase matching

Fig. 4. Transmission spectra of the single-helix CLPG. (a)
Core-offset of the eccentric core d=0.1 µm and coupling
length L = 21.0 mm; (b) the core offset of the eccentric core
d=0.3 µm with coupling length L = 7.1 mm.
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condition of an individual resonance may shift due to the
influence of adjacent resonances. These will be explained
in the following example.

Figures 4(a) and (b) present the transmission spec-
tra in the case of core-offset d=0.1 and 0.3 µm, respec-
tively. In the entire wavelength range under consider-
ation, there were two dips resulting from the couplings
with the LP11 and LP12 modes, respectively. A pitch of
527 mm was set to allow the resonant wavelength of the
coupling with the LP12 mode at 1.55 µm according to
the phase matching conditions. The length of the mini-
mum total power transfer of the coupling is chosen as the
length of the grating. In the two figures, the solid lines
represent results obtained by considering the couplings
simultaneously with the four adjacent cladding modes
(from LP13 to LP16 mode), whereas the dashed lines rep-
resent those considering only the couplings with the LP11

and LP12 modes. In the case of d=0.3 µm, the difference
is quite obvious. The bandwidths of the resonant dip
and its sidelobes are much broader than those of a con-
ventional long-period fiber grating. Thus, to identify the
spectral characteristics precisely, the couplings with the
nearby cladding modes must be taken into account, es-
pecially when the coupling is stronger. Meanwhile, due
to the strong influence of the couplings with the adjacent
cladding mode in the case of a stronger coupling, the res-
onant wavelength evaluated by the phase-matching con-
dition of two-mode coupling is expected to shift.

In conclusion, a helical-core fiber with small eccentric-
ity has been analyzed using the ideal mode approach.
The analysis reveals the property of polarization inde-
pendence when light propagates through the single-helix
chiral fiber gratings. The simulated transmission char-
acteristics agree well with those obtained theoretically
and experimentally. This indicates that the conventional
coupled-mode theory, along with its mode approaches,
is an efficient analytic method for chiral fiber gratings.

The difference of the spectral characteristics from those
of conventional fiber gratings are also demonstrated to
be noted in practical use.
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